

Vorlesung Praxis Leistungselektronischer Systeme

WS2017/18

Elektrotechnisches Institut (ETI) – Leistungselektronische Systeme

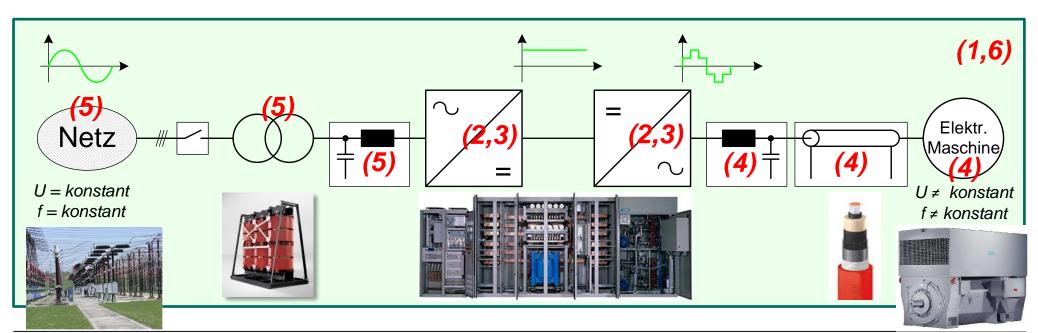
Vorlesungsinhalte

Kapitel 0: Einleitung

Kapitel 1: Systemübersicht

Kapitel 2: Stromrichterauslegung

Kapitel 3: Halbleiterauslegung

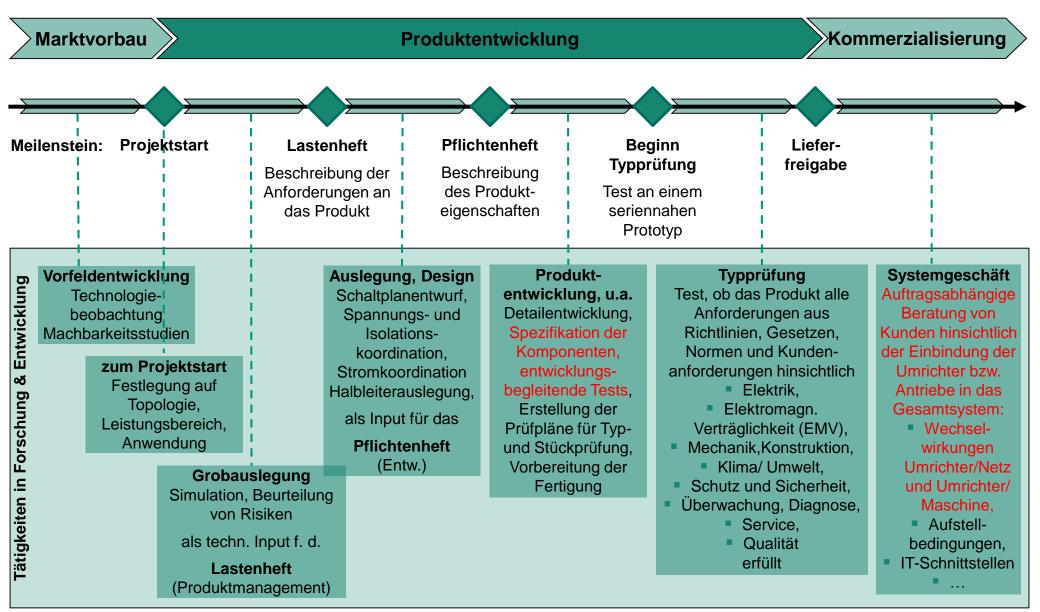

Kapitel 4: Kabel

Kapitel 5: Filter

Kapitel 6: Wechselwirkung Umrichter/Maschine

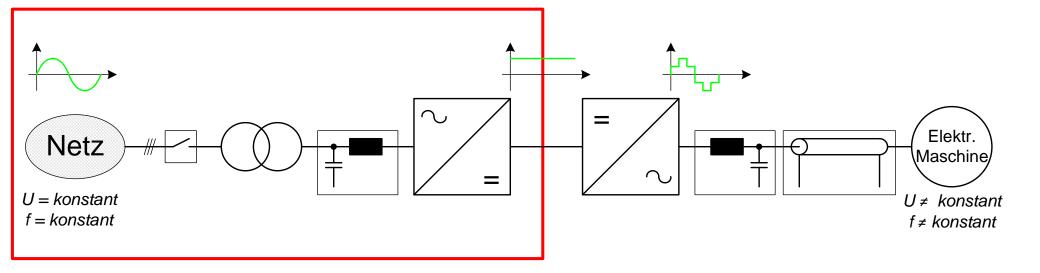
Kapitel 7: Netz

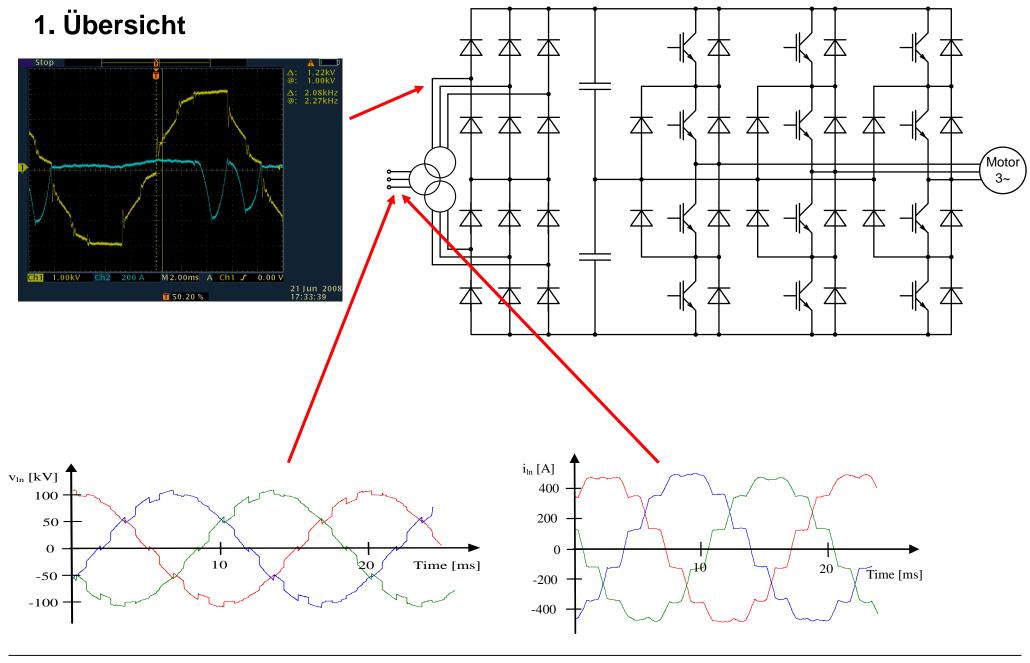
Kapitel 8: Systembetrachtungen


Gliederung

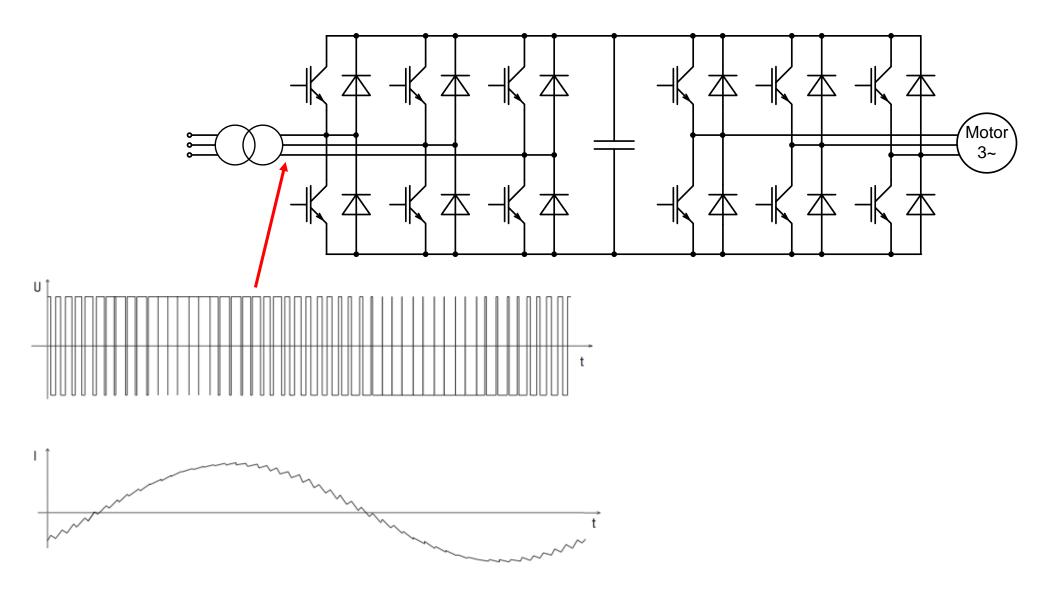
Wechselwirkungen Umrichter-Netz

- 1. Übersicht
- 2. Netzanwendungen
- 3. Transformatoren für Umrichterbetrieb
- 4. Netzrückwirkungen
- 5. Netzfilter
- 6. Zusammenfassung


1. Übersicht – Bedeutung im Entwicklungsprozess

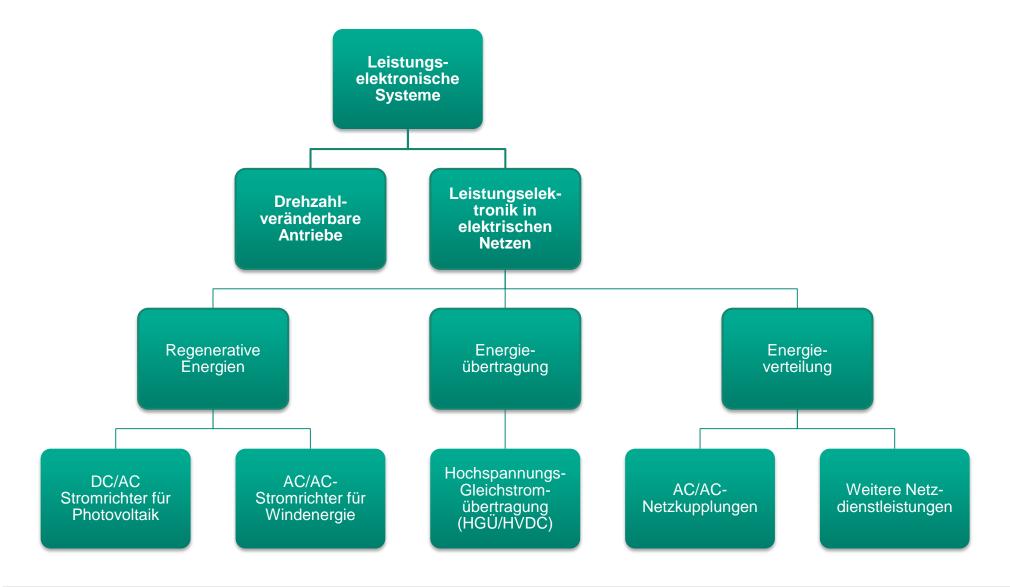


1. Übersicht



5

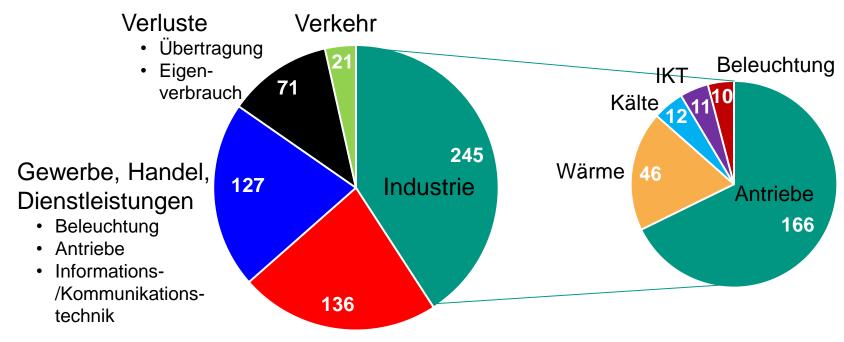
1. Übersicht



Gliederung

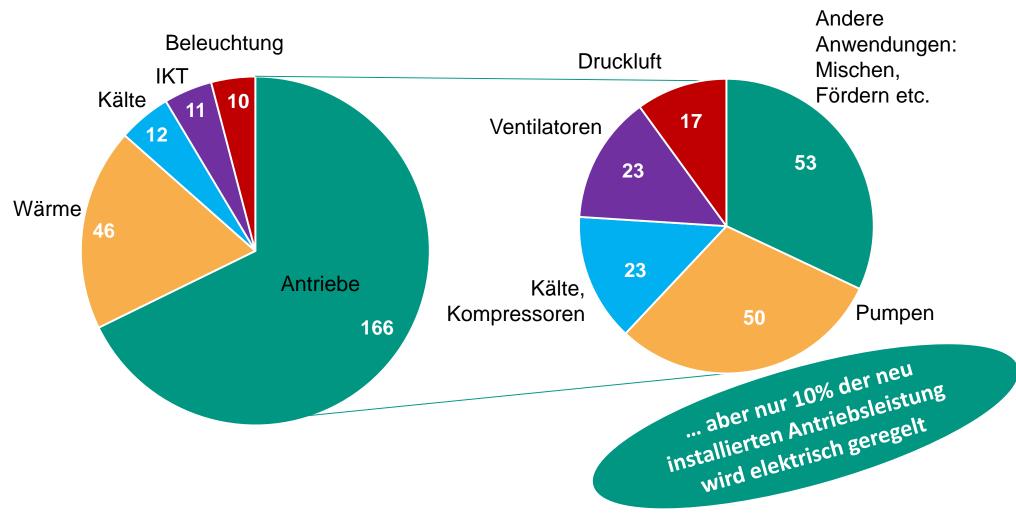
Wechselwirkungen Umrichter-Netz

- 1. Übersicht
- 2. Netzanwendungen
- 3. Transformatoren für Umrichterbetrieb
- 4. Netzrückwirkungen
- 5. Netzfilter
- 6. Zusammenfassung



Stromverbrauch 2013 in Dtl.: 600 TWh

ca. 20% Anteil am gesamten Endenergieverbrauch (Endenergie: 37% Kraftstoffe, 27% Gas, 20% Strom, 5% Kohle)


Haushalte (1TWh ~ ca. 300.000 Haushalte)

- · Wärme/Kälte
- Informations-/Kommunikationstechnik

alle Angaben in TWh

Haupt-Energieverbraucher in der Industrie in Deutschland (in TWh, 2013)

alle Angaben in TWh

Quelle: Rationelle Energiegewinnung in der Industrie, Fraunhofer Institut System und Innovationsforschung Karlsruhe; Siemens

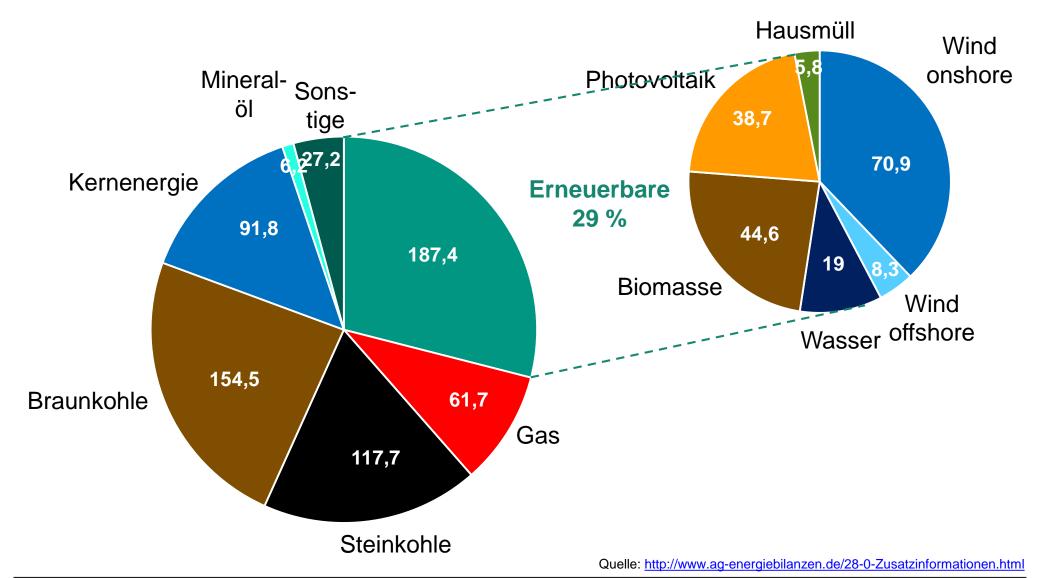


Installierte Netto-Leistung zur Stromerzeugung in Deutschland (in GW)

Gesamt: 195,09 GW

Stand: 04.10.2016

Mineralöl Wasser-



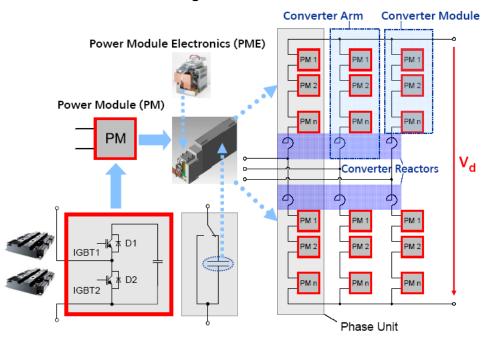
Quelle: https://www.energy-charts.de/power inst de.htm,

Bundesnetzagentur

Bruttostromerzeugung in Deutschland 2015 (total: 646,5 TWh)

2. Anwendungen – Hochspannungs-Gleichstromübertragung

- Notwendiger Aus- und Umbau des Übertragungsnetzes
 - Nachhaltige Sicherstellung der Versorgungssicherheit (15min / Jahr)
 - Integration Erneuerbarer Energien
 - Weiterentwicklung des europäischen Energiemarkts
- 3-4 Korridore für Hochspannungs-Gleichstrom-Übertragung (HGÜ) Trassenlänge: max. 2.100km Übertragungsleistung: 12 GW
- AC-Leitungsneubau in Bestandstrassen: 3.400 km



Quelle: Netzentwicklungsplan

2. Anwendungen – Hochspannungs-Gleichstromübertragung

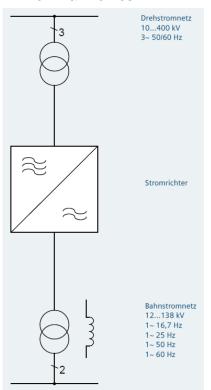
- Punkt-zu-Punkt-Übertragung von elektrischer Energie über große Distanzen
- Kriterien:
 - Skalierbare Spannung, d.h. Leistung
 - Wirkungsgrad
 - Hohe Verfügbarkeit
 - Netzrückwirkungen

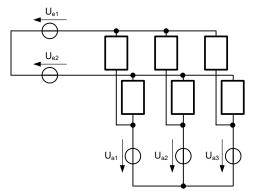
- Selbstgeführte Hochspannungs-Gleichstromübertragung (Beispiel: Sylwin1):
 - DC-Nennspannng: U=640 kV
 - DC-Nennstrom: I=1350 A
 - P_{nenn}=865MW
- Topologie
 - Modular Multilevel Converter (MMC) mit ca. 2000 Zellen pro Stromrichter (mit 4,5kV-IGBT-Modulen) Quelle: Siemens

2. Anwendungen – Netzkupplung Hafenstromversorgung

- Netzkupplung zwischen Hamburger Stadtnetz und Bordnetz
- Kriterien:
 - Skalierbare Spannung
 - Hohe Regeldynamik
 - Hohe Verfügbarkeit
 - Netzrückwirkungen

- Hafenstromversorgung in Hamburg-Altona:
 - AC-Nennspannng: U=6,6 kV
 - AC-Nennstrom: I=1050 A
 - P_{nenn}=12MVA
- Topologie
 - Stadtnetz: Diodengleichrichter
 - Bordnetz: Modular Multilevel Converter (MMC) mit 72 Zellen pro Stromrichter (mit 1,7kV-IGBTs)


 Quelle: Siemens



2. Anwendungen – Bahnstromversorgung aus dem 3ph-Drehstromnetz

Application example: VSC based static frequency converter for the AC railway grid supply (<120MW) featuring

- Modular design, scalable voltage, i.e. power
- High efficiency
- High availability
- Low harmonics

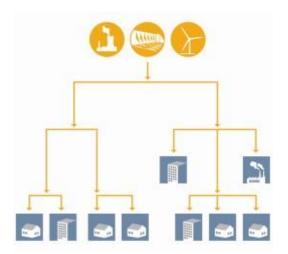
Power semiconductors:

- IGBT-modules with V_{CES}=3,3-6,5 kV (single n=1)
- Press Pack-IGBT with V_{CFS}=4,5kV: future ?
- Press Pack-IGCT: future ?

Advantages:

- Filterless, highly modular
- Lower costs due to standard transformers

Quelle: Siemens



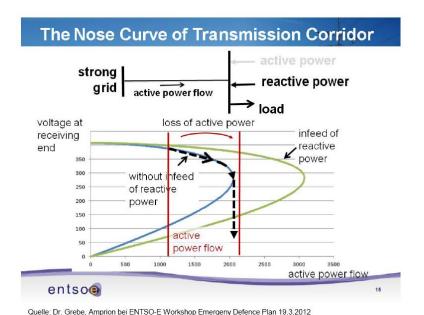
2. Anwendungen – Zukünftige Netzstrukturen

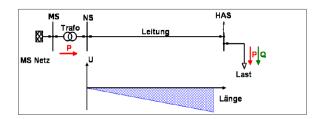
State-of-the-art grid structure

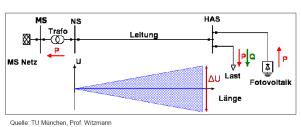
- Centralized power generation
- Unidirectional power flow
- Power generation following the load
- Centralized grid management
- Centralized top down structure

Future grid structure

- Decentralized power generation, higher distances between source and load
- Bidirectional power flow and balancing
- Power generation independent from the load
- Decentralized grid management
- Decentralized bottom up structure (public/private) requiring refurbishment and upgrades





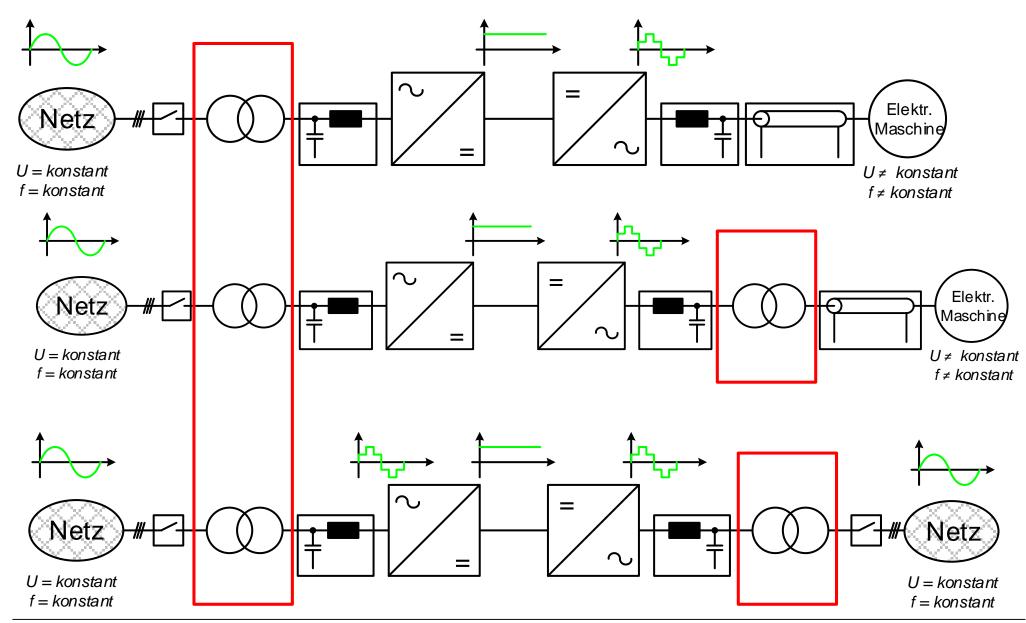

2. Anwendungen – Weitere Netzdienstleitungen

Heute bereitgestellte Systemdienstleistungen (SDL):

- Frequenzregelung P(f):
 - z.B. Wirkleistungsabregelung ab 50,2 Hz
- Spannungshaltung:
 - Blindleistungsbereitstellung: Q(U)
 - Dyn. Netzstützung: LVRT-Fähigkeit (Low Voltage Ride Through)
- → nur für kritische Netzsituationen

Zukünftig: Leistungselektronik muss netzbildende Eigenschaften bekommen

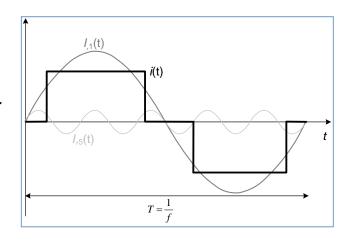
- Frequenzregelung / -bildung:
 - Ersatz von Momentanreserve, Primär- und Sekundärregelung
- Spannungshaltung / -bildung:
 - Spannungsquellenregelung
 - Regelung der Spannungsqualität
- Blindleistungskompensation
- Oberschwingungskompensation
- Phasensymmetrierung
- Automatische Anpassung in Echtzeit

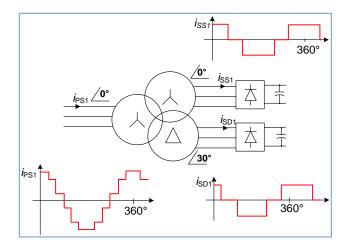


Gliederung

Wechselwirkungen Umrichter-Netz

- 1. Übersicht
- 2. Netzanwendungen
- 3. Transformatoren für Umrichterbetrieb
- 4. Netzrückwirkungen
- 5. Netzfilter
- 6. Zusammenfassung




Elektrotechnisches Institut (ETI)

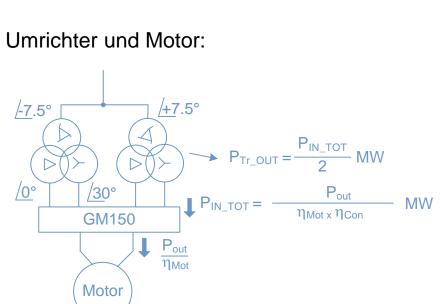
Leistungselektronische Systeme

Besonderheiten gegenüber reinem Netzbetrieb

- Nicht sinusförmige Ströme
- Mögliche DC-Ströme durch Umrichter (z.B. durch Offsetfehler in der Strommessung): Gefahr der Sättigung → großer Luftspalt
- Zusatzverluste durch Stromharmonische:
 - Eisenverluste im Kern
 - Wirbelstromverluste in Windungen und weiteren Metallteilen
- Bei Netztransformatoren
 - Drei- oder Mehrwicklungstransformatoren für die Reduzierung/Eliminierung niederfrequenter Netzharmonischer
- Bei Step-Up/Down-Transformatoren zwischen Umrichter und Motor:
 - Variable Frequenz
 - Derating im Anlaufverhalten durch Betrieb mit kleinen Motorfrequenzen:
 - → erhöhter Kernquerschnitt, → nur quadratische Kennlinie möglich

Netztransformatoren

 Die Zahl der Transformatoren und deren Wicklungskonfiguration ist sehr stark von den jeweiligen Randbedingungen abhängig (z.B. Kühlung, verfügbarer Platz, Hersteller)


Puls- zahl	Mögliche Transf	formator-Konfigurationen	Phasen- verschiebung zwischen den Systemen	Beispiel der Wicklungskonfiguration	
6	Zweiwickler		-	Zweiwickler: Yd1, Yd5, Dd0	
12	1x Dreiwickler 2x Zweiwickler		30°	Dreiwickler: Yd11d0, Dy5d0	
24	1x Fünfwickler 2x Dreiwickler 4x Zweiwickler		15°	2x Dreiwickler: D(+7.5°)y5d0 und D(-7.5°)y5d0	
			360°		

$$\left| \Delta \phi_{\text{v2el}} \right| = \frac{360^{\circ}}{n_{pulse}}$$

Auslegungsaspekte

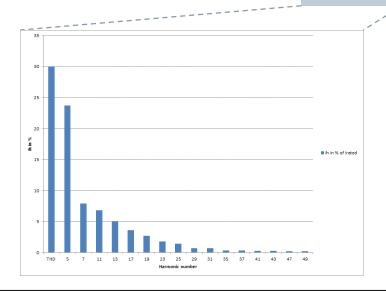
- Spannungsauslegung:
 - Primärspannung: Nennspannung, inkl. Spannungstoleranz (z.B. +/-10%)
 - Sekundärspannung: Nennspannung im Leerlauf
 - → Spannungsabfall unter Last muss berücksichtigt werden
- Frequenzauslegung:
 - Nennnetzfrequenz (z.B. +/-3%)
 - Bei Step-Up/Down-Transformatoren zwischen Umrichter und Motor: Betriebsbereich Maschine
- Nennleistung: Spezifiziert werden
 - die Ausgangswirkleistung P_{Tr_out} des Transformators,
 - cosφ am Umrichtereingang,
 - THD_i des Umrichtereingangsstroms.
 - Nicht spezifiziert werden: Grund- und Oberschwingungsverluste

Pout in MW

Auslegungsaspekte

- Oberschwingungsverluste durch nicht rein sinusförmige Ströme:
 - Wirbelstromverluste in den Wicklungen

$$P_{WE} = F_{WE} \times P_{WE1}$$


wobei.

P_{WE}: Wirbelstromverluste bei nicht sinusförmigem Strom

P_{WE1}: Wirbelstromverluste durch Grundschwingungsstrom

 F_{WE} : Faktor für Berücksichtigung der Wirbelstromverluste durch Harmonische

$$F_{\text{WE}} = \sum_{1}^{n} \left(\frac{I_{\text{h}}}{I_{1}}\right)^{2} \times h^{2} \times \left(\frac{P_{\text{WE1h}}}{P_{\text{WE1}}}\right)^{2}$$

Abhängig von Geometrie (Angabe durch Hersteller)

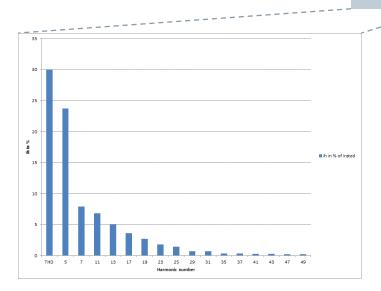
Auslegungsaspekte

Oberschwingungsverluste durch nicht rein sinusförmige Ströme:

P_{SE}:

Eisenverluste im Kern

$$P_{SE} = F_{SE} \times P_{SE1}$$

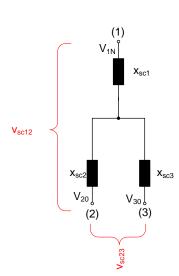

wobei,

Eisenverluste bei nicht sinusförmigem Strom

P_{SE1}: Eisenverluste durch Grundschwingungsstrom

F_{SE}: Faktor für Berücksichtigung der Eisenverluste durch Harmonische

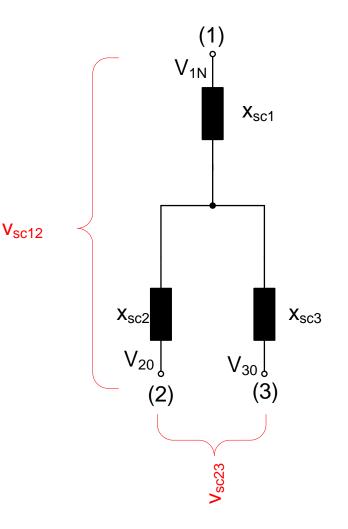
$$F_{\text{SE}} = \sum_{h=1}^{n} \left(\frac{I_{\text{h}}}{I_{\text{1}}}\right)^{2} \times h^{0.8}$$



Auslegungsaspekte

- Maximale Flussdichte:
 - Eisensättigung muss vermieden werden, da es durch diese Nichtlinearitäten zu Spannungsverzerrungen kommt
 - i.d.R. wird nicht der absolute Wert, sondern der Abstand zur maximalen Sättigungsflussdichte spezifiziert (z.B. für Netztransformator: $\Delta B = 0.2$ T, d.h. $B_{max} = 1,6$ T bei $B_{sat} = 1.8$ T)

- Mögliche DC-Ströme verursacht durch den Umrichter führen zu schneller Eisensättigung
 - → Überhitzung, Vibrationen, Geräusche
- Muss spezifiziert werden, z.B. max (4 A, 1 % des Grundschwingungs-Nennstroms). Stellt einen Erfahrungswert dar.
- Kurzschlussimpedanz
 - u_{k,min}: abh. vom Kurzschlussstrom und Lichtbogenfestigkeit
 - u_{k,max}: abh. von maximal zulässigem Spannungsabfall über dem Transformator bzw. minimal zulässige Zwischenkreisspannung U_d
 - Angabe eines Bereichs und einer Toleranz geben dem Hersteller größere Freiheitsgrade in der Produktion, da u_k schwer exakt einstellbar ist



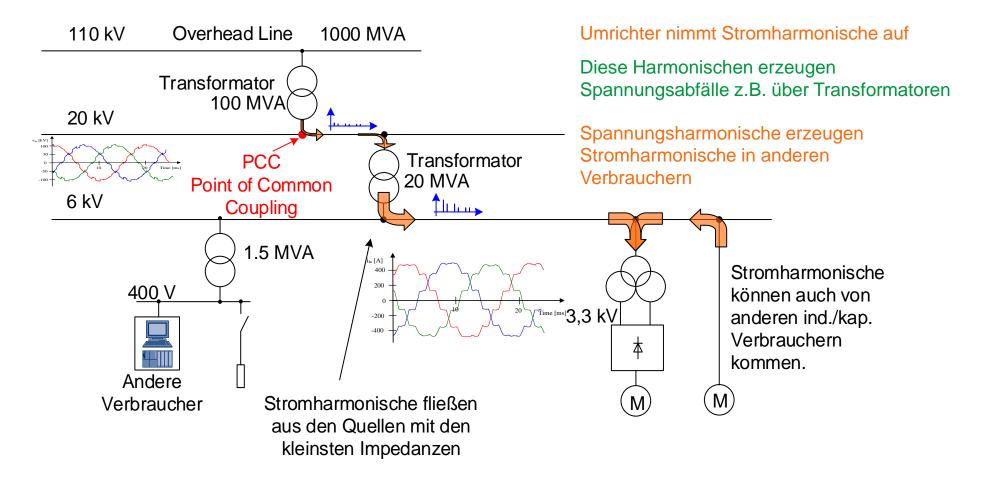
Auslegungsaspekte

- Kopplungsfaktor:
 - Definiert die maximal zulässige Kopplung zwischen den Sekundärwicklungen eines Mehrwicklungs-Transformators
 - Ziel: möglichst gute Entkopplung zwischen den Sekundärsystemen, um eine gegenseitige Beeinflussung zu vermeiden, z.B. k=10..15%

$$k = \frac{\mathbf{X}_{\text{sc1}}}{\mathbf{X}_{\text{sc1}} + \mathbf{X}_{\text{sc2}}}$$
$$= \frac{\mathbf{X}_{\text{sc1}}}{\mathbf{V}_{\text{sc12}}}$$
$$\mathbf{V}_{\text{sc23}} = 2 \cdot \mathbf{V}_{\text{sc12}} \cdot (1 - k)$$

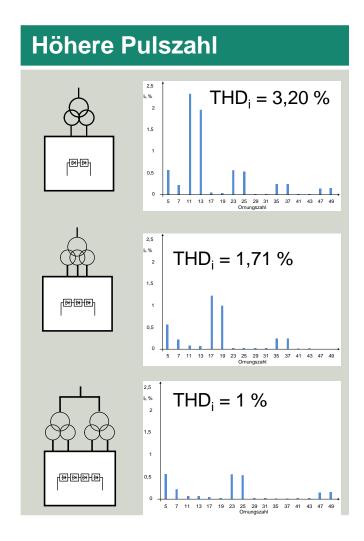
Gliederung

Wechselwirkungen Umrichter-Netz

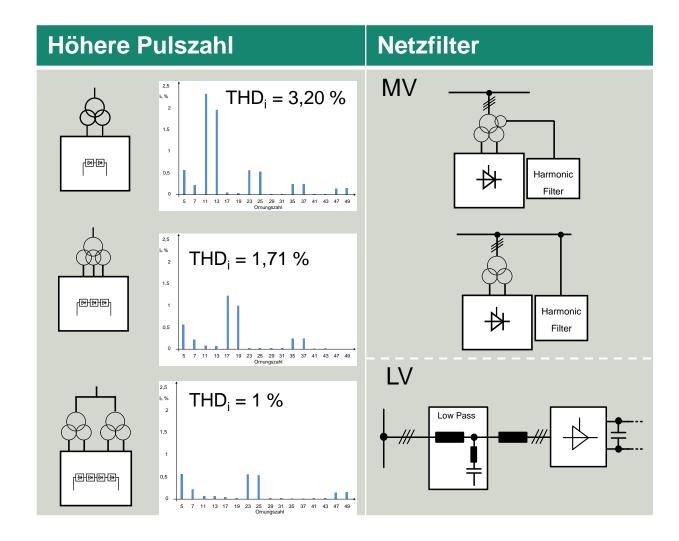

- 1. Übersicht
- 2. Netzanwendungen
- 3. Transformatoren für Umrichterbetrieb
- 4. Netzrückwirkungen
- 5. Netzfilter
- 6. Zusammenfassung

Auswirkungen

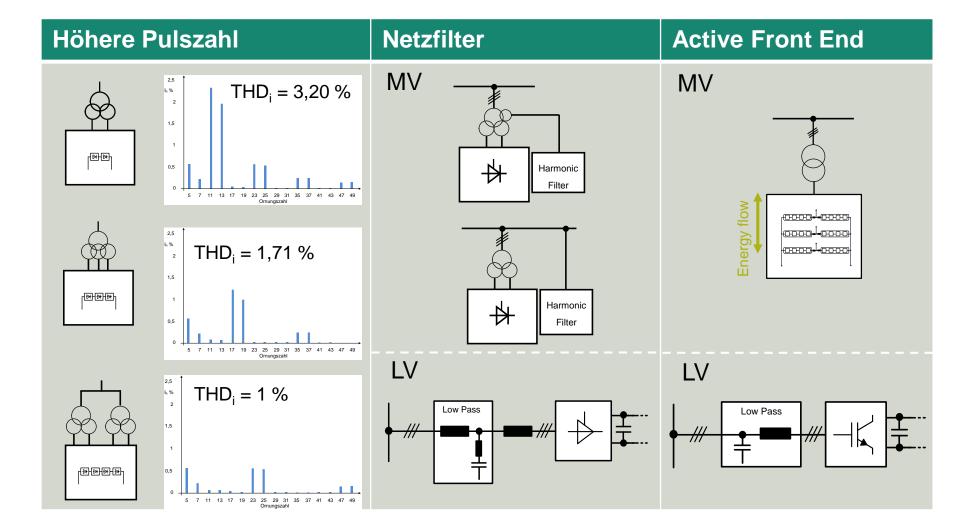
- Zusätzliche Verluste in Bauteilen
 - Transformatoren, Drosseln,
 - Kabel (ohmsch, dielektrisch)
 - Motoren
 - Kondensatoren (dielektrisch)
- Zusätzliche Isolationsbelastung von Betriebsmitteln
- Störung von elektronischen Geräten, z.B. Uhren, Messgeräte
- Fehlerhafte Auslösung von Schaltern oder Sicherungen
- Anregung von Resonanzen im Netz oder bei anderen Verbrauchern


Ausbreitung von Harmonischen bei Dioden-Gleichrichter am Netz

Abhilfemaßnahmen



Elektrotechnisches Institut (ETI)


Leistungselektronische Systeme

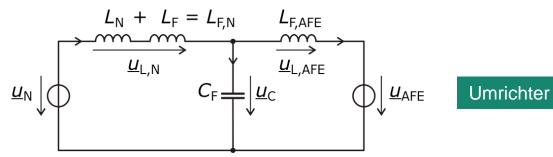
Abhilfemaßnahmen

Abhilfemaßnahmen

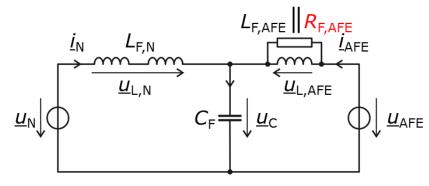
Gliederung

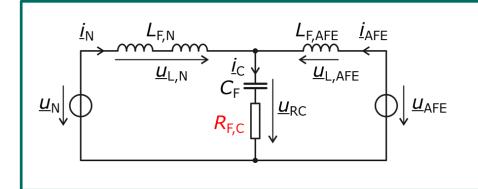
Wechselwirkungen Umrichter-Netz

- 1. Übersicht
- 2. Netzanwendungen
- 3. Transformatoren für Umrichterbetrieb
- 4. Netzrückwirkungen
- 5. Netzfilter
- 6. Zusammenfassung


Elektrotechnisches Institut (ETI)

Leistungselektronische Systeme


Beispiel: T-Netzfilter


ohne Dämpfung:

Netz

mit Dämpfung: $\underbrace{\underline{i_{N}} \ L_{N}}_{\underline{U_{L},N}} \underbrace{L_{F,AFE}}_{\underline{U_{L}}} \underbrace{\underline{i_{AFE}}}_{\underline{U_{L},AFE}} \underbrace{\underline{i_{AFE}}}_{\underline{U_{L}}} \underbrace{\underline{u_{L},AFE}}_{\underline{U_{L}}} \underbrace{\underline{u_{L},$

- Vorteil: keine ungedämpften Schwingkreise
- Evtl. Kombination mit Drosseldämpfung bei zu hohen Kernverlusten

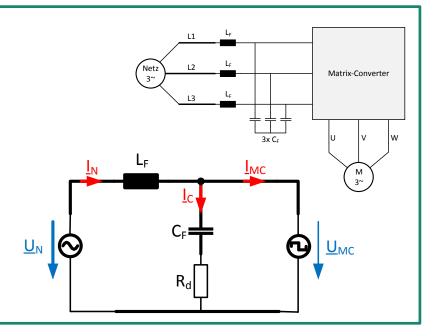
Motivation

 Einhaltung von Anforderungen zu Netzharmonischen (z.B. IEEE-519, Grid Codes) Current harmonic limits in percentage of rated current amplitude according to IEEE-519

Maximum odd harmonic current distortion (in percent) of I_G for general distribution systems (120V–69kV)

		`			
I_{SC}/I_{G}	h <11	11 <u>≤</u> <i>h</i> <17	17 <u>≤</u> <i>h</i> <23	23 <u><</u> h <35	35 <u><</u> <i>h</i>
< 20*	4.0	2.0	1.5	0.6	0.3
20 < 50	7.0	3.5	2.5	1.0	0.5
50 < 100	10.0	4.5	4.0	1.5	0.7
100 < 1000	12.0	5.5	5.0	2.0	1.0
> 1000	15.0	7.0	6.0	2.5	1.4

 I_{SC} : grid short circuit current.


 I_G : maximum demand grid current.

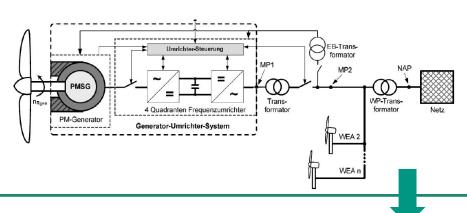
Even harmonics are limited to 25% of the odd harmonics.

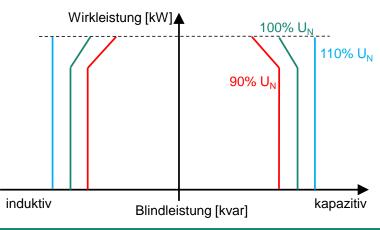
*All power generation equipment is limited to this value of current distortion.

Schaltungsauswahl

Randbedingungen

Resonanzfrequenz des Filters


$$f_{res,LCL} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{L_{Netz} + L_{AFE}}{L_{Netz} \cdot L_{AFE} \cdot C_F}}$$
 wobei $10 \cdot f_{N} < f_{res,LCL} < \frac{1}{2} \cdot f_{S}$


(f_S: result. Schaltfrequenz, f_N: Netzfrequenz)

- Berücksichtigung des Spannungsabfalls über den Filter
 - im gesamten P/Q-Betriebsbereich des Umrichters
 - im gesamten Bereich der Netzspannung U_N am PCC

Bei gleichzeitiger Einhaltung einer ausreichenden Spannungsreserve für die Stromregelung

max. Scheinleistung des Stromrichters

Randbedingungen

netzseitige Stromharmonische (z.B. IEEE-519, Grid Codes)

Current harmonic limits in percentage of rated current amplitude according to IEEE-519

Maximum odd harmonic current distortion (in percent) of I_G for general distribution systems (120V–69kV)

$\overline{I_{SC}/I_G}$	h <11	11 <u><</u> <i>h</i> <17	17 <u><</u> <i>h</i> <23	23 <u><</u> <i>h</i> <35	35 <u><</u> <i>h</i>
< 20*	4.0	2.0	1.5	0.6	0.3
20 < 50	7.0	3.5	2.5	1.0	0.5
50 < 100	10.0	4.5	4.0	1.5	0.7
100 < 1000	12.0	5.5	5.0	2.0	1.0
> 1000	15.0	7.0	6.0	2.5	1.4

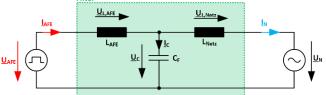
 I_{SC} : grid short circuit current.

 I_G : maximum demand grid current.

Even harmonics are limited to 25% of the odd harmonics.

*All power generation equipment is limited to this value of current distortion.

Randbedingungen


- Optimierung des Filters:
 - minimale, mittlere gespeicherte Energie
 - Hier besonders wichtig: Gespeicherte Energie in den Drosseln (verbaute "Drosselenergie" ist wesentlich teurer als "Kondensatorenergie")
 - minimale Filterverluste
 - minimale Baugröße
 - fertigungstechnische Randbedingungen (Standardreihen, Bemessungswerte,...)
- Optimierung auf Systemebene:
 - Kritisch: Vermeidung von Resonanzen mit dem Netz in allen möglichen Netzkonfigurationen
 - minimale Gesamtsystemkosten
 - minimale Gesamtsystemverluste

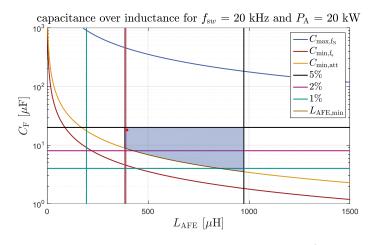
Modellierung, Simulation, Auslegung

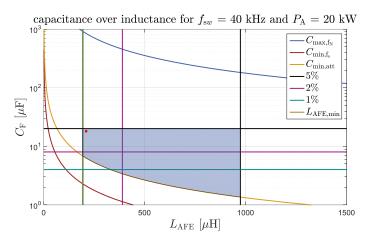
• Verhältnisfaktor r zwischen L_{AFE} und L_{Netz} legt das Verhältnis zwischen den Induktivitäten fest

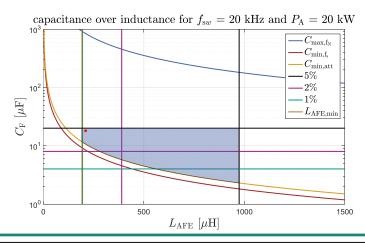
$$L_{Netz} = r \cdot L_{AFE}$$
$$r = 0 \dots 1$$

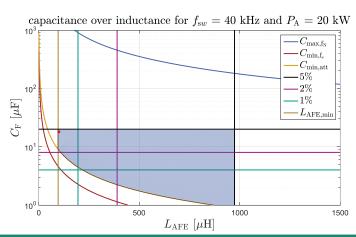
- lacktriangle Die Induktivität L_{AFE} ist aus regelungsdynamischen Gründen vorteilhaft größer als L_{Netz}
- Die Stromregelung hat nur direkten Einfluss auf I_{AFE} über L_{AFE} und U_{AFE}
- Gesamtinduktivität für Filterwirkung vorgegeben Aufteilung variabel
- Bestimmung der Harmonischen mit dem größten Amplituden/Frequenz-Verhältnis |A|/f
- Für die μ-te Stromharmonische gilt:

$$i_{\mu} = \left| \frac{\underline{U}_{AFE,\mu}}{-j\omega_{\mu}^{3} \cdot (L_{Netz} \cdot L_{AFE} \cdot C_{F}) + j\omega_{\mu} \cdot (L_{Netz} + L_{AFE})} \right|$$

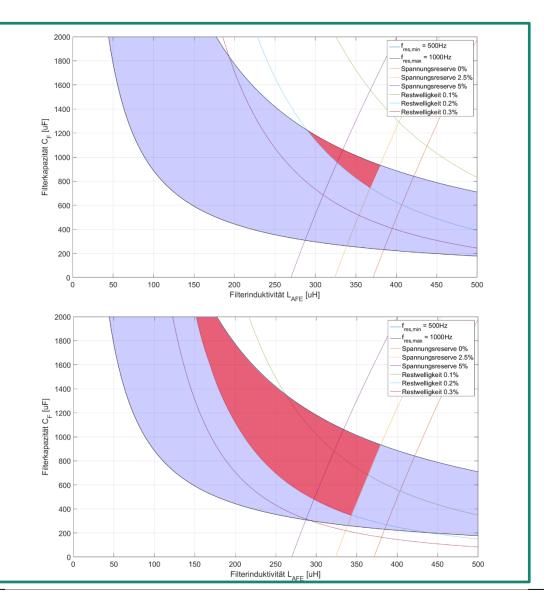

 Die Filterresonanzfrequenz kann so bestimmt werden, dass die Amplitude der Harmonischen mit dem höchsten |A|/f kleiner als der gewünschte Zielwert ist oder der THD eingehalten wird.




Modellierung, Simulation, Auslegung


Beispiel für 2-Level Umrichter (P=20kW) bei f_S=20 bzw. 40kHz

Beispiel für 3-Level Umrichter (P=20kW) bei f_S=20 bzw. 40kHz



Modellierung, Simulation, Auslegung

 Beispiel für 2-Level Umrichter (P=1,5MW) bei f_s=2kHz

 Beispiel für 3-Level Umrichter (P=1,5MW) bei f_s=2kHz

6. Wechselwirkungen Umrichter-Netz

Zusammenfassung

- Viele Aspekte die für die Wechselwirkung Umrichter-Maschine gelten, sind auch hier gültig (z.B. Verhalten von Kabelstrecken, Reflexionen)
- Auslegung von Filtern ist ein Systemthema und wird beeinflusst von u.a.
 Netzkonfiguration, weiteren Verbrauchern, Stromrichterauslegung
- Mögliche Maßnahmen zur Verbesserung der Netzqualität sind:
 - Vermeidung von Oberschwingungen durch den Umrichter,
 - Passive Netzfilter,
 - Aktive Netzfilter (Umrichter),
 - Kompensationsanlagen.
- Wechselwirkung Umrichter-Netz nimmt immer mehr an Bedeutung zu:
 - Anteil von Leistungselektronik im Netz steigt,
 - Anforderungen an Leistungselektronik zur Bereitstellung von Netzdienstleistungen steigen sehr stark an.
 - → Gegenstand aktueller Forschungsthemen

